Budget analysis on groundwater and river water interaction in Kherlen River Basin, eastern Mongolia

TSUJIMURA Maki*, DAVAA Gombo**, KAMIMERA Hideyuki***, ABE Yutaka*, HIGUCHI Satoru****, TANAKA Tadashi* and SHIMADA Jun****

* Graduate School of Life and Environmental Sciences, University of Tsukuba
** Hydrology Section, Institute of Meteorology and Hydrology, Mongolia
*** Nagaoka University of Technology
**** Faculty of Natural Sciences, Kumamoto University
Hypothesis

Interaction between GW and River

GW to River

Permafrost

River to GW

No permafrost

Baganuur

Monganmorit

Kherlenbayan-Ulaan

Interaction between GW and River
But...
The groundwater wells seem to situate in a topographic hollow?
Objectives

- To quantify the interaction process between groundwater and river water
- To investigate water budget of the groundwater well
Methods

- **Interaction between groundwater and river water**
 - River discharge measurement of the mainstream and the tributaries

- **Water budget of the well**
 - Measurement of area of topographical watershed of the well
Spatial distribution of discharge rate observed from June 8 to 12, 2004.
Oxygen-18 and d-excess variation along the main stream

\[d\text{-}\text{excess} = \delta D - 8 \cdot \delta^{18}O \]

Horizontal distance along Kherlen River (km)

\[\delta^{18}O \text{ (‰)} \]

\[\text{d-excess (‰)} \]

UDH

BGN

MNG

Oxygen 18

d-excess
Water and isotope budget of the stream

\[
Q_{in} - E + G_{in} + q_{in} = Q_{out}
\]

\[
Q_{in} \delta_{in} - E \delta_v + G_{in} \delta_g + q_{in} \delta_{qin} = Q_{out} \delta_{out}
\]

\(\delta_{in}\): isotope ratio of inflow; \(\delta_v\): isotope ratio of evaporated vapor;
\(\delta_g\): isotope ratio of groundwater; \(\delta_{out}\): isotope ratio of outflow;
\(\delta_{qin}\): isotope ratio of tributary
Isotopic fluctuation during evaporation

Craig and Gordon (1964)

\[
\frac{R_v}{R_l} - 1 = \frac{h_A(\delta_L - \delta_A)}{(1 + \delta_L) - \varepsilon^*} \frac{(a - h_A)(\frac{a \alpha_{v-l} e_{i,L}}{e}) + e_i}{e}
\]

- \(R_l \): isotopic ratio of liquid water
- \(R_v \): isotopic ratio of water vapor
- \(a \): activity at water surface
- \(\alpha_{v-l} \): fractionation factor
- \(e \): resistance against atmospheric vapor diffusion
- \(e_i, e_{i,L} \): resistance against isotope molecular diffusion in vapor and liquid water
- \(h_A \): relative humidity
- \(\varepsilon^* \): \(a (1 - \alpha_{v-l}) + \Delta \varepsilon \)
- \(\Delta \varepsilon \): \((a - h_A)(e_i / e - 1) \)
Summary of budget analysis at the intervals along the stream

- **Mongonmorit→Baganuur**
 - Elevation: 1390 to 1290 m
 - Horizontal distance: 58 km
 - Q_{in}: 10.8 m3/s
 - Q_{out}: 12.1 m3/s
 - δ_{in}: -16.0 ‰
 - δ_{out}: -15.0 ‰
 - δ_g: -11.2 ‰
 - δ_v: -29.0 ‰
 - δ_{qin}: -11.4, -10.2, -9.3 ‰
 - q_{in}: 0.003, 0.04, 0.02 m3/s
 - E: 0.1 m3/s (4 mm/d)
 - G_{in}: 1.0 m3/s (1.7 x 10$^{-2}$ m3/s/km)

- **Baganuur→Underhaan**
 - Elevation: 1290 to 1020 m
 - Horizontal distance: 247 km
 - Q_{in}: 12.1 m3/s
 - Q_{out}: 12.6 m3/s
 - δ_{in}: -15.0 ‰
 - δ_{out}: -12.6 ‰
 - δ_g: -12.9 ‰
 - δ_v: -24.6 ‰
 - δ_{qin}: -11.5 ‰
 - q_{in}: 0.4 m3/s
 - E: 2.4 m3/s (16 mm/d)
 - G_{in}: 2.6 m3/s (1.1 x 10$^{-2}$ m3/s/km)
Water budget estimation of a well

\[P - E - G_{out} - U = \Delta S \]

- \(P \): precipitation
- \(E \): evapotranspiration
- \(U \): pumping rate
- \(G_{out} \): groundwater discharge rate
- \(\Delta S \): change of storage volume
Water budget estimation for a well near Dergehaan

\[P - E - G_{out} - U = \Delta S \]

Catchment area: 1,111,758 km²
\[P: 226 \text{ mm/(Apr – Sep 2004)} \]
\[E: 97 \text{ mm/(Apr – Sep 2004)} \]

\(G_{out} \):
- Saturated conductivity: \(K = 10^{-4} \text{ m/s} \) (Asano, 2004)
- Hydraulic gradient: \(10^{-3} \)
- Depth of aquifer: 20 m (Groundwater data base, IMH, Mongolia)
- Width of groundwater discharge zone: 600 m
\(G_{out} = 38,400 \text{ m}^3/\text{yr} \)

For sustainable use of groundwater, \(\Delta S \) should be 0 mm,
\(U = 187 \text{ m}^3/\text{day} \)
Summary

• Groundwater should discharge into the Kherlen River from MNG to UDH.
 – Groundwater inflow rate in upper stream region might be more than that in lower stream region.

• Available volume of groundwater well at DGH seems to be enough, but not huge.
 – If you have a just half input of annual average precipitation for several years, the well might be dried out.

• More detailed quantitative estimation should be necessary for groundwater inflow and well budget.